数据结构与算法-二分查找
二分查找
零、二分查找实例-定位 IP 对应省份
通过 IP 地址来查找 IP 归属地功能,不知道你用过没?没用过也没关系,打开百度,在搜索框里随便输入一个 IP 地址,就会看到它的归属地。
这个功能并不复杂,它是通过维护一个很大的 IP 地址库来实现。地址库中包括 IP 地址范围和归属地的对应关系。
当我们想要查询 202.102.133.13 这个 IP 地址的归属地时,我们就在地址库中搜索,发到 IP 地址落在[202.102.133.0, 202.102.133.255] 这个地址范围内,那我们就可以将这个 IP 地址范围对应的归属地“山东东营市”显示给用户了。
1 | [202.102.133.0, 202.102.133.255] 山东东营市 |
现在我的问题是,在庞大地址库中逐一比对 IP 地址所在的区间,是非常耗时的。假设我们有 12 万条这样的 IP 区间与归属地的对应关系,如何快速出一个 IP 地址的归属地呢?
唐纳德·克努特(Donald E.Knuth)在《计算机程序设计艺术》的第 3 卷《排序和查找》中说到:“尽管第一个二分查找算法于 1946 年出现,然而第一个完全正确的二分查找算法实现直到 1962 年才出现。”
二分查找的变形问题很多。
一、查找第一个值等于给定值的元素
如果有序数据集合中存在重复的数据,我们希望找到第一个值等于给定值的数据。
比如下面这样一个有序数组,其中 a[5],a[6],a[7] 的值都等于 8,是重复的数据。我们希望查找第一个等于 8 的数据,也就是下标是 5 的元素。
1、写法一
100 个人写二分查找就会有 100 种写法。网上有很多关于变形二分查找的实现方法,有很多写得非常简洁,比如下面这个写法。但是,尽管简洁,理解起来却非常烧脑,也很容易写错。
1 | public int bsearch(int[] a, int n, int value) { |
2、方法二
1 | public int bsearch(int[] a, int n, int value) { |
a[mid] 跟要查找的 value 的大小关系有三种情况:大于、小于、等于。对于 a[mid] > value 的情况,我们需要更新 high = mid-1;对于 a[mid] < value 的情况,我们需要更新 low = mid+1。那当 a[mid] = value 的时候应该如何处理呢?
如果我们查找的是任意一个值等于给定值的元素,当 a[mid] 等于要查找的值时,a[mid] 就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当 a[mid] 等于要查找的值时,我们就需要确认一下这个 a[mid] 是不是第一个值等于给定值的元素。
我们重点看第 11 行代码。如果 mid 等于 0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果 mid 不等于 0,但 a[mid] 的前一个元素 a[mid-1] 不等于 value,那也说明 a[mid] 就是我们要找的第一个值等于给定值的元素。
如果经过检查之后发现 a[mid] 前面的一个元素 a[mid-1] 也等于 value,那说明此时的 a[mid] 肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新 high = mid-1,因为要找的元素肯定出现在 [low, mid-1] 之间。
对比上面的两段代码,是不是下面那种更好理解?实际上,很多人都觉得变形的二分查找很难写,主要原因是太追求第一种那样完美、简洁的写法。而对于我们做工程开发的人来说,代码易读懂、没 Bug,其实更重要,所以我觉得第二种写法更好。
3、方法三
1 | // 查找第一个等于给定值的元素 |
二、查找最后一个等于给定值的元素
1、方法一
1 | public int bsearch(int[] a, int n, int value) { |
我们还是重点看第 11 行代码。如果 a[mid] 这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果 a[mid] 的后一个元素 a[mid+1] 不等于 value,那也说明 a[mid] 就是我们要找的最后一个值等于给定值的元素。
如果我们经过检查之后,发现 a[mid] 后面的一个元素 a[mid+1] 也等于 value,那说明当前的这个 a[mid] 并不是最后一个值等于给定值的元素。我们就更新 low = mid+1,因为要找的元素肯定出现在 [mid+1, high] 之间。
2、方法二
1 | // 查找最后一个等于给定值的元素 |
三、查找第一个大于等于给定值的元素
现在我们再来看另外一类变形问题。在有序数组中,查找第一个大于等于给定值的元素。比如,数组中存储的这样一个序列:3,4,6,7,10。如果查找第一个大于等于 5 的元素,那就是 6。
1、方法一
1 | public int bsearch(int[] a, int n, int value) { |
如果 a[mid] 小于要查找的值 value,那要查找的值肯定在 [mid+1, high] 之间,所以,我们更新 low = mid+1。
对于 a[mid] 大于等于给定值 value 的情况,我们要先看下这个 a[mid] 是不是我们要找的第一个值大于等于给定值的元素。如果 a[mid] 前面已经没有元素,或者前面一个元素小于要查找的值 value,那 a[mid] 就是我们要找的元素。这段逻辑对应的代码是第 7 行。
如果 a[mid-1] 也大于等于要查找的值 value,那说明要查找的元素在 [low, mid-1] 之间,所以,我们将 high 更新为 mid-1。
2、方法二
1 | // 第一个大于等于 |
四、查找最后一个小于等于给定值的元素
现在,我们来看最后一种二分查找的变形问题,查找最后一个小于等于给定值的元素。比如,数组中存储了这样一组数据:3,5,6,8,9,10。最后一个小于等于 7 的元素就是 6。是不是有点类似上面那一种?实际上,实现思路也是一样的。
1、方法一
1 | public int bsearch7(int[] a, int n, int value) { |
2、方法二
1 | // 最后一个小于等于 |
五、IP 问题解答
如何快速定位出一个 IP 地址的归属地?
现在这个问题应该很简单了。如果 IP 区间与归属地的对应关系不经常更新,我们可以先预处理这 12 万条数据,让其按照起始 IP 从小到大排序。如何来排序呢?我们知道,IP 地址可以转化为 32 位的整型数。所以,我们可以将起始地址,按照对应的整型值的大小关系,从小到大进行排序。
然后,这个问题就可以转化为第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。
当我们要查询某个 IP 归属地时,我们可以先通过二分查找,找到最后一个起始 IP 小于等于这个 IP 的 IP 区间,然后,检查这个 IP 是否在这个 IP 区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。
六、内容小结
凡是用二分查找能解决的,绝大部分我们更倾向于用散列表或者二叉查找树。即便是二分查找在内存使用上更节省,但是毕竟内存如此紧缺的情况并不多。那二分查找真的没什么用处了吗?
实际上,上一节讲的求“值等于给定值”的二分查找确实不怎么会被用到,二分查找更适合用在“近似”查找问题,在这类问题上,二分查找的优势更加明显。用其他数据结构,比如散列表、二叉树,就比较难实现了。
变体的二分查找算法写起来非常烧脑,很容易因为细节处理不好而产生 Bug,这些容易出错的细节有:终止条件、区间上下界更新方法、返回值选择。
- 本文标题:数据结构与算法-二分查找
- 本文作者:beyondhxl
- 本文链接:https://www.beyondhxl.com/post/43138433.html
- 版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明出处!